Birzeit University
 Mathematics Department
 Math332
 Homework
 Application of Laplace transform

Instructor: Dr. Ala Talahmeh

Exercise \#1. Use the Laplace transform to solve the problem:

$$
9 \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<3, \quad t>0
$$

subject to the boundary and initial conditions

$$
\left\{\begin{array}{l}
u(0, t)=0, \quad u(3, t)=3-3 t, t>0 \\
u(x, 0)=x, \quad u_{t}(x, 0)=-x, 0<x<3
\end{array}\right.
$$

Ans. $u(x, t)=(1-t) x$.

Exercise \#2. Use the Laplace transform to solve the problem:

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}, \quad 0<x<1, \quad t>0
$$

subject to the boundary and initial conditions

$$
\left\{\begin{array}{l}
u(0, t)=0, \quad u(1, t)=0, t>0 \\
u(x, 0)=2 \sin 3 \pi x, \quad 0<x<1
\end{array}\right.
$$

Ans. $u(x, t)=2 e^{-9 \pi^{2} t} \sin 3 \pi x$.

Exercise \#3. Use the Laplace transform to solve the problem:

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}, \quad 0<x<1, \quad t>0,
$$

subject to the boundary and initial conditions

$$
\left\{\begin{array}{l}
u(0, t)=0, \quad u(1, t)=0, t>0, \\
u(x, 0)=0, \quad u_{t}(x, 0)=\sin \pi x, \quad 0<x<1
\end{array}\right.
$$

Ans. $u(x, t)=\frac{1}{\pi} \sin \pi x \sin \pi t$.

Exercise \#4. Use the Laplace transform to solve the problem:

$$
4 \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}, x>0, \quad t>0
$$

subject to the boundary and initial conditions

$$
\left\{\begin{array}{l}
u(0, t)=\sin \pi t, \quad \lim _{x \rightarrow \infty} u(x, t)=0, t>0 \\
u(x, 0)=0, \quad u_{t}(x, 0)=0, x>0
\end{array}\right.
$$

Ans.

$$
u(x, t)=\sin \pi\left(t-\frac{x}{2}\right) \mathcal{U}\left(t-\frac{x}{2}\right) .
$$

Exercise \#5. Use the Laplace transform to solve the problem:

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}, x>0, \quad t>0
$$

subject to the boundary and initial conditions

$$
\left\{\begin{array}{l}
u(0, t)=1, \quad \lim _{x \rightarrow \infty} u(x, t)=0, t>0 \\
u(x, 0)=e^{-x}, \quad u_{t}(x, 0)=0, \quad x>0
\end{array}\right.
$$

Ans.

$$
u(x, t)=(1-\cosh (t-x)) \mathcal{U}(t-x)+e^{-x} \cosh t
$$

Good Luck

